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I. INTRODUCTION

Reinforcement learning (RL) is a machine learning control
scheme. It is useful for applications where an agent must learn
from its interactions with an environment for which it does
not have a complete model and lacks supervision. In RL, the
agent learns to map actions to states based on feedback in the
form of a reinforcement signal (reward) [1]–[3]. Intuitively,
the agent is rewarded for desirable behaviour, and punished
for behaving poorly.

II. THE PROBLEM

A. Q-learning

In this RL algorithm, from which our algorithm is extended,
the agent updates a table Q with entries Q(s,a). When the
agent transitions from state s at time t to new state s′ at time
(t + 1), having taken action a at time t, the table is updated
according to:

Qk+1(s,a)← Qk(s,a)

+α[r+ γ max
a

Qk(s′,a)−Qk(s,a)] (1)

where 0≤ α < 1 is a learning rate, γ is a discount factor, and
r is a reward received at time t. Over time, the Q-table will
converge to estimate the true value of actions within various
states, and thus find the optimal policy a = π∗(s) [1].

B. Variably Delayed Markov Decision Processes

We define a Variably Delayed Markov Decision Process
(VDMDP) to be a MDP where the reward signal suffers from
a Poissonian time delay. This means that if the agent performs
an action, it will not receive the corresponding reward until the
variable delay has elapsed. In other words, rewards and actions
are asynchronous. Normally, rewards are received immediately
following an action. A VDMDP can be characterized by a 6-
tuple (S,A,P,R,γ,λ ) where S is the set of states within the
environment, A is the set of actions the agent may choose, and
P maps S×A×S 7→ [0,1] which is the probability that taking
action a ∈ A while in state s ∈ S will lead to state s′ ∈ S.
R is defined as the reward signal which maps S 7→ R, γ is
the discount factor to be applied to future rewards [4], and λ

represents the mean and variance of the Poisson distribution
for the time delay.

III. SIMULATION ENVIRONMENTS

Q-learning simulations were conducted in grid-world envi-
ronments of differing sizes with variable delays introduced.
In particular, square grid-worlds of size 3×3, 5×5, and 9×9
were used.

In these environments, the agent begins in a random state.
The top left-most state yields a reward of 10 for any action
and moves the robot to the bottom right-most state. Bumping
into a wall yields a reward of −1. Diagonal moves are not
allowed.

These simulations concluded that as the environment size
increased, and as the variable delay increased, the performance
of the learning agent decreased relative to that of an optimal
undelayed policy for each respective environment. Thus, the
problem of stochastically delayed rewards becomes more
important for environments with more states and larger delays.

IV. MULTIPLE-MODEL Q-LEARNING

Building upon the Q-learning algorithm from [1], we pro-
posed that the agent learn as detailed in Algorithm 1. The
new idea is that we introduce a new learning dimension λ̂

in addition to s and a. Think of the system as having many
Q(s,a) tables in parallel. At each time step, a candidate model
λ̂ is selected and its Q-table is made active for decision making
during that time step. Next, all models (active and inactive) are
updated according to their own respective delay assumptions,
taking into account the action chosen by the active model.

V. CONVERGENCE

Multiple-model Q-learning converges in a stochastic sense,
as shown in [5]. The proof is an extension of the work in
[6], which states that if four assumptions are true, and if the
update equation takes the form xi = xi+α(Fi(x)−xi+wi), then
x(t) converges to x∗ with probability 1. Therefore, Qk(s,a, λ̂ )
converges to Q(s,a, λ̂ )∗ with probability 1 as k→ ∞.

VI. RESULTS

Simulations were conducted in a 9 x 9 grid world to evaluate
how well the novel algorithm generates a control policy. The
simulations were performed in a grid world environments to
demonstrate the significant effect of stochastic time delays
even in a relatively small and simple environment. The solu-
tions described are intended to be carried on to other more



Algorithm 1 - Multiple Model Q-Learning

Set λ̂max
Initialize state-action memory of sufficient length
Initialize α,γ (e.g. α = 0.1,γ = 0.9)
Initialize Q(s,a, λ̂ ) arbitrarily (e.g. optimistic initialization)
for episode do

Initialize s
repeat

select λ̂ ∗ using policy from Q (e.g. ε-greedy)
select a∗ using policy from Q assuming λ̂ ∗ is correct
(e.g. ε-greedy)
execute action a∗

observe rt and s′

for λ̂ from 0 to λ̂max do

Qk+1(st−λ̂
,at−λ̂

, λ̂ )← (1−α)Qk(st−λ̂
,at−λ̂

, λ̂ )

+α

[
rt + γ max

λ̂ ,a
Qk(s′t−λ̂

,a, λ̂ )

]
end for
s← s′

until s is terminal or behaviour is acceptable
end for

complex applications, especially in mobile robotics, where
grid world simulations are useful for testing algorithms.

During simulation, the mean delay is set to λ = 13, and the
highest feasible delay estimate λmax is set to 50 time steps.
Other parameters are set to the example values in Algorithm
1.

Fig. 1 shows the improved performance from using the
multiple-model Q-learning algorithm in a 9×9 grid world. The
multiple-model Q-learning method achieves a performance of
about 95% relative to normal Q-learning in an undelayed en-
vironment. In comparison, Q-learning achieves a performance
of about 0% relative to the undelayed environment.

Next, we form a control policy using the maximally valuable
entries in the Q-tables for both algorithms. The policies are
shown in Fig. 2. Note that multiple-model Q-learning follows
an optimal path while Q-learning has become stuck in a loop.

VII. CONCLUSION

By introducing parallel Q-tables along the new time delay
learning dimension, multiple model Q-learning allows the
agent to learn more from the same experience despite the
presence of disruptive time delays in the reward signal.

Future work will explore new ways of processing the
multiple delay estimate updates in parallel rather than in serial
fashion, since the updates are independent. It may also be
fruitful to investigate using a kernel to assign less reward to
delay estimates which are far from the most valuable delay
estimate, λ̂ ∗. We hope that these ideas will make learning
faster.

Fig. 1. Relative performance of multiple-model Q-learning vs single-model
Q-learning in the 9×9 grid world with random delays present

Fig. 2. Deterministic policy formed using each algorithm



VIII. THE TEAM

The Autonomous Robotics Research Group (ARRG) in-
cludes researchers in three institutions, the Royal Military
College of Canada (RMCC), Carleton University and Queens
University. The main interest of the group is in machine
learning, especially Reinforcement Learning, and multiple
robotics, from ground robots to Unmanned Aerial Vehicles
(UAVs) and Autonomous Underwater Vehicles (AUVs). It
counts with state-of-the-art lab facilities located at RMCC with
more than a dozen ground robots and ten UAVs.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] P. Kulkarni, “Introduction to Reinforcement and Systemic Machine
Learning,” Reinforcement and Systemic Machine Learning, pp. 1-21,
2012.

[3] M. P. Deisenroth, G. Neumann, J. Peters, “A Survey on Policy Search
for Robotics,” Foundations and Trends in Robotics, 2011.

[4] T. Walsh, A. Nouri, L. Li, and M. Littman, “Planning and learning in
environments with delayed feedback,” Machine Learning: ECML 2007,
Jan. 2007.

[5] J. S. Campbell, S. N. Givigi and H. M. Schwartz, “Multiple Model
Q-learning for Stochastic Time-Delayed Reinforcement Learning,” sub-
mitted to Journal of Intelligent & Robotic Systems, 2014.

[6] J. N. Tsitsiklis, “Asynchronous Stochastic Approximation and Q-
learning”, Machine Learning, 16, 1994, pp. 185-202.

[7] J. S. Campbell, S. N. Givigi and H. M. Schwartz, “Multiple Model
Q-learning for Stochastic Reinforcement Delays,” IEEE Systems, Man,
and Cybernetics, 2014.

Bios

Second Lieutenant Jeffrey S. Campbell is a pilot in the
Royal Canadian Air Force. He completed his undergraduate
degree in 2012 at the Royal Military College of Canada
in Kingston, Canada. While there, he specialized in robotic
control and worked on quadrotor unmanned aerial vehicles. In
2014 he received his master’s degree in electrical engineering
from Carleton University in Ottawa, Canada. His work there
focused on unsupervised machine learning with applications in
mobile robotics. Jeff is currently posted at Defence Research
and Development Canada to work on over-the-horizon radar
projects.

Sidney N. Givigi received his B.Sc. in Computer Science
and an M.A.Sc. in Electrical Engineering from the Federal
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